Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Spectral Mapping of Singing Voices: U-Net-Assisted Vocal Segmentation (2405.20059v1)

Published 30 May 2024 in cs.SD, cs.AI, and eess.AS

Abstract: Separating vocal elements from musical tracks is a longstanding challenge in audio signal processing. This study tackles the distinct separation of vocal components from musical spectrograms. We employ the Short Time Fourier Transform (STFT) to extract audio waves into detailed frequency-time spectrograms, utilizing the benchmark MUSDB18 dataset for music separation. Subsequently, we implement a UNet neural network to segment the spectrogram image, aiming to delineate and extract singing voice components accurately. We achieved noteworthy results in audio source separation using of our U-Net-based models. The combination of frequency-axis normalization with Min/Max scaling and the Mean Absolute Error (MAE) loss function achieved the highest Source-to-Distortion Ratio (SDR) of 7.1 dB, indicating a high level of accuracy in preserving the quality of the original signal during separation. This setup also recorded impressive Source-to-Interference Ratio (SIR) and Source-to-Artifact Ratio (SAR) scores of 25.2 dB and 7.2 dB, respectively. These values significantly outperformed other configurations, particularly those using Quantile-based normalization or a Mean Squared Error (MSE) loss function. Our source code, model weights, and demo material can be found at the project's GitHub repository: https://github.com/mbrotos/SoundSeg

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: