A Point-Neighborhood Learning Framework for Nasal Endoscope Image Segmentation (2405.20044v2)
Abstract: Lesion segmentation on nasal endoscopic images is challenging due to its complex lesion features. Fully-supervised deep learning methods achieve promising performance with pixel-level annotations but impose a significant annotation burden on experts. Although weakly supervised or semi-supervised methods can reduce the labelling burden, their performance is still limited. Some weakly semi-supervised methods employ a novel annotation strategy that labels weak single-point annotations for the entire training set while providing pixel-level annotations for a small subset of the data. However, the relevant weakly semi-supervised methods only mine the limited information of the point itself, while ignoring its label property and surrounding reliable information. This paper proposes a simple yet efficient weakly semi-supervised method called the Point-Neighborhood Learning (PNL) framework. PNL incorporates the surrounding area of the point, referred to as the point-neighborhood, into the learning process. In PNL, we propose a point-neighborhood supervision loss and a pseudo-label scoring mechanism to explicitly guide the model's training. Meanwhile, we proposed a more reliable data augmentation scheme. The proposed method significantly improves performance without increasing the parameters of the segmentation neural network. Extensive experiments on the NPC-LES dataset demonstrate that PNL outperforms existing methods by a significant margin. Additional validation on colonoscopic polyp segmentation datasets confirms the generalizability of the proposed PNL.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.