Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

CycleFormer : TSP Solver Based on Language Modeling (2405.20042v4)

Published 30 May 2024 in cs.LG

Abstract: We propose a new transformer model for the Traveling Salesman Problem (TSP) called CycleFormer. We identified distinctive characteristics that need to be considered when applying a conventional transformer model to TSP and aimed to fully incorporate these elements into the TSP-specific transformer. Unlike the token sets in typical LLMs, which are limited and static, the token (node) set in TSP is unlimited and dynamic. To exploit this fact to the fullest, we equated the encoder output with the decoder linear layer and directly connected the context vector of the encoder to the decoder encoding. Additionally, we added a positional encoding to the encoder tokens that reflects the two-dimensional nature of TSP, and devised a circular positional encoding for the decoder tokens that considers the cyclic properties of a tour. By incorporating these ideas, CycleFormer outperforms state-of-the-art (SOTA) transformer models for TSP from TSP-50 to TSP-500. Notably, on TSP-500, the optimality gap was reduced by approximately 2.8 times, from 3.09% to 1.10%, compared to the existing SOTA. The code will be made available at https://github.com/Giventicket/CycleFormer.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com