Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Domain Adaptation with Cauchy-Schwarz Divergence (2405.19978v1)

Published 30 May 2024 in cs.LG and stat.ML

Abstract: Domain adaptation aims to use training data from one or multiple source domains to learn a hypothesis that can be generalized to a different, but related, target domain. As such, having a reliable measure for evaluating the discrepancy of both marginal and conditional distributions is crucial. We introduce Cauchy-Schwarz (CS) divergence to the problem of unsupervised domain adaptation (UDA). The CS divergence offers a theoretically tighter generalization error bound than the popular Kullback-Leibler divergence. This holds for the general case of supervised learning, including multi-class classification and regression. Furthermore, we illustrate that the CS divergence enables a simple estimator on the discrepancy of both marginal and conditional distributions between source and target domains in the representation space, without requiring any distributional assumptions. We provide multiple examples to illustrate how the CS divergence can be conveniently used in both distance metric- or adversarial training-based UDA frameworks, resulting in compelling performance.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.