Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improved Out-of-Scope Intent Classification with Dual Encoding and Threshold-based Re-Classification (2405.19967v2)

Published 30 May 2024 in cs.CL, cs.AI, and cs.LG

Abstract: Detecting out-of-scope user utterances is essential for task-oriented dialogues and intent classification. Current methodologies face difficulties with the unpredictable distribution of outliers and often rely on assumptions about data distributions. We present the Dual Encoder for Threshold-Based Re-Classification (DETER) to address these challenges. This end-to-end framework efficiently detects out-of-scope intents without requiring assumptions on data distributions or additional post-processing steps. The core of DETER utilizes dual text encoders, the Universal Sentence Encoder (USE) and the Transformer-based Denoising AutoEncoder (TSDAE), to generate user utterance embeddings, which are classified through a branched neural architecture. Further, DETER generates synthetic outliers using self-supervision and incorporates out-of-scope phrases from open-domain datasets. This approach ensures a comprehensive training set for out-of-scope detection. Additionally, a threshold-based re-classification mechanism refines the model's initial predictions. Evaluations on the CLINC-150, Stackoverflow, and Banking77 datasets demonstrate DETER's efficacy. Our model outperforms previous benchmarks, increasing up to 13% and 5% in F1 score for known and unknown intents on CLINC-150 and Stackoverflow, and 16% for known and 24% % for unknown intents on Banking77. The source code has been released at https://github.com/Hossam-Mohammed-tech/Intent_Classification_OOS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com