Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

PLA4D: Pixel-Level Alignments for Text-to-4D Gaussian Splatting (2405.19957v4)

Published 30 May 2024 in cs.CV and cs.AI

Abstract: Previous text-to-4D methods have leveraged multiple Score Distillation Sampling (SDS) techniques, combining motion priors from video-based diffusion models (DMs) with geometric priors from multiview DMs to implicitly guide 4D renderings. However, differences in these priors result in conflicting gradient directions during optimization, causing trade-offs between motion fidelity and geometry accuracy, and requiring substantial optimization time to reconcile the models. In this paper, we introduce \textbf{P}ixel-\textbf{L}evel \textbf{A}lignment for text-driven \textbf{4D} Gaussian splatting (PLA4D) to resolve this motion-geometry conflict. PLA4D provides an anchor reference, i.e., text-generated video, to align the rendering process conditioned by different DMs in pixel space. For static alignment, our approach introduces a focal alignment method and Gaussian-Mesh contrastive learning to iteratively adjust focal lengths and provide explicit geometric priors at each timestep. At the dynamic level, a motion alignment technique and T-MV refinement method are employed to enforce both pose alignment and motion continuity across unknown viewpoints, ensuring intrinsic geometric consistency across views. With such pixel-level multi-DM alignment, our PLA4D framework is able to generate 4D objects with superior geometric, motion, and semantic consistency. Fully implemented with open-source tools, PLA4D offers an efficient and accessible solution for high-quality 4D digital content creation with significantly reduced generation time.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com