Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 73 tok/s
Gemini 3.0 Pro 52 tok/s
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multi-View People Detection in Large Scenes via Supervised View-Wise Contribution Weighting (2405.19943v1)

Published 30 May 2024 in cs.CV

Abstract: Recent deep learning-based multi-view people detection (MVD) methods have shown promising results on existing datasets. However, current methods are mainly trained and evaluated on small, single scenes with a limited number of multi-view frames and fixed camera views. As a result, these methods may not be practical for detecting people in larger, more complex scenes with severe occlusions and camera calibration errors. This paper focuses on improving multi-view people detection by developing a supervised view-wise contribution weighting approach that better fuses multi-camera information under large scenes. Besides, a large synthetic dataset is adopted to enhance the model's generalization ability and enable more practical evaluation and comparison. The model's performance on new testing scenes is further improved with a simple domain adaptation technique. Experimental results demonstrate the effectiveness of our approach in achieving promising cross-scene multi-view people detection performance. See code here: https://vcc.tech/research/2024/MVD.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.