Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 209 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

P$^2$-ViT: Power-of-Two Post-Training Quantization and Acceleration for Fully Quantized Vision Transformer (2405.19915v1)

Published 30 May 2024 in cs.AI

Abstract: Vision Transformers (ViTs) have excelled in computer vision tasks but are memory-consuming and computation-intensive, challenging their deployment on resource-constrained devices. To tackle this limitation, prior works have explored ViT-tailored quantization algorithms but retained floating-point scaling factors, which yield non-negligible re-quantization overhead, limiting ViTs' hardware efficiency and motivating more hardware-friendly solutions. To this end, we propose \emph{P$2$-ViT}, the first \underline{P}ower-of-Two (PoT) \underline{p}ost-training quantization and acceleration framework to accelerate fully quantized ViTs. Specifically, {as for quantization,} we explore a dedicated quantization scheme to effectively quantize ViTs with PoT scaling factors, thus minimizing the re-quantization overhead. Furthermore, we propose coarse-to-fine automatic mixed-precision quantization to enable better accuracy-efficiency trade-offs. {In terms of hardware,} we develop {a dedicated chunk-based accelerator} featuring multiple tailored sub-processors to individually handle ViTs' different types of operations, alleviating reconfigurable overhead. Additionally, we design {a tailored row-stationary dataflow} to seize the pipeline processing opportunity introduced by our PoT scaling factors, thereby enhancing throughput. Extensive experiments consistently validate P$2$-ViT's effectiveness. {Particularly, we offer comparable or even superior quantization performance with PoT scaling factors when compared to the counterpart with floating-point scaling factors. Besides, we achieve up to $\mathbf{10.1\times}$ speedup and $\mathbf{36.8\times}$ energy saving over GPU's Turing Tensor Cores, and up to $\mathbf{1.84\times}$ higher computation utilization efficiency against SOTA quantization-based ViT accelerators. Codes are available at \url{https://github.com/shihuihong214/P2-ViT}.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: