Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Improving the Fidelity of CNOT Circuits on NISQ Hardware (2405.19891v1)

Published 30 May 2024 in quant-ph, cs.IT, and math.IT

Abstract: We introduce an improved CNOT synthesis algorithm that considers nearest-neighbour interactions and CNOT gate error rates in noisy intermediate-scale quantum (NISQ) hardware. Compared to IBM's Qiskit compiler, it improves the fidelity of a synthesized CNOT circuit by about 2 times on average (up to 9 times). It lowers the synthesized CNOT count by a factor of 13 on average (up to a factor of 162). Our contribution is twofold. First, we define a $\textsf{Cost}$ function by approximating the average gate fidelity $F_{avg}$. According to the simulation results, $\textsf{Cost}$ fits the error probability of a noisy CNOT circuit, $\textsf{Prob} = 1 - F_{avg}$, much tighter than the commonly used cost functions. On IBM's fake Nairobi backend, it matches $\textsf{Prob}$ to within $10{-3}$. On other backends, it fits $\textsf{Prob}$ to within $10{-1}$. $\textsf{Cost}$ accurately quantifies the dynamic error characteristics and shows remarkable scalability. Second, we propose a noise-aware CNOT routing algorithm, NAPermRowCol, by adapting the leading Steiner-tree-based connectivity-aware CNOT synthesis algorithms. A weighted edge is used to encode a CNOT gate error rate and $\textsf{Cost}$-instructed heuristics are applied to each reduction step. NAPermRowCol does not use ancillary qubits and is not restricted to certain initial qubit maps. Compared with algorithms that are noise-agnostic, it improves the fidelity of a synthesized CNOT circuit across varied NISQ hardware. Depending on the benchmark circuit and the IBM backend selected, it lowers the synthesized CNOT count up to $56.95\%$ compared to ROWCOL and up to $21.62\%$ compared to PermRowCol. It reduces the synthesis $\textsf{Cost}$ up to $25.71\%$ compared to ROWCOL and up to $9.12\%$ compared to PermRowCol. Our method can be extended to route a more general quantum circuit, giving a powerful new tool for compiling on NISQ devices.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: