Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploring the Robustness of Decision-Level Through Adversarial Attacks on LLM-Based Embodied Models (2405.19802v3)

Published 30 May 2024 in cs.MM

Abstract: Embodied intelligence empowers agents with a profound sense of perception, enabling them to respond in a manner closely aligned with real-world situations. LLMs delve into language instructions with depth, serving a crucial role in generating plans for intricate tasks. Thus, LLM-based embodied models further enhance the agent's capacity to comprehend and process information. However, this amalgamation also ushers in new challenges in the pursuit of heightened intelligence. Specifically, attackers can manipulate LLMs to produce irrelevant or even malicious outputs by altering their prompts. Confronted with this challenge, we observe a notable absence of multi-modal datasets essential for comprehensively evaluating the robustness of LLM-based embodied models. Consequently, we construct the Embodied Intelligent Robot Attack Dataset (EIRAD), tailored specifically for robustness evaluation. Additionally, two attack strategies are devised, including untargeted attacks and targeted attacks, to effectively simulate a range of diverse attack scenarios. At the same time, during the attack process, to more accurately ascertain whether our method is successful in attacking the LLM-based embodied model, we devise a new attack success evaluation method utilizing the BLIP2 model. Recognizing the time and cost-intensive nature of the GCG algorithm in attacks, we devise a scheme for prompt suffix initialization based on various target tasks, thus expediting the convergence process. Experimental results demonstrate that our method exhibits a superior attack success rate when targeting LLM-based embodied models, indicating a lower level of decision-level robustness in these models.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube