Papers
Topics
Authors
Recent
2000 character limit reached

Significance of Chain of Thought in Gender Bias Mitigation for English-Dravidian Machine Translation (2405.19701v2)

Published 30 May 2024 in cs.CL and cs.AI

Abstract: Gender bias in machine translation (MT) sys- tems poses a significant challenge to achieving accurate and inclusive translations. This paper examines gender bias in machine translation systems for languages such as Telugu and Kan- nada from the Dravidian family, analyzing how gender inflections affect translation accuracy and neutrality using Google Translate and Chat- GPT. It finds that while plural forms can reduce bias, individual-centric sentences often main- tain the bias due to historical stereotypes. The study evaluates the Chain of Thought process- ing, noting significant bias mitigation from 80% to 4% in Telugu and from 40% to 0% in Kan- nada. It also compares Telugu and Kannada translations, emphasizing the need for language specific strategies to address these challenges and suggesting directions for future research to enhance fairness in both data preparation and prompts during inference.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.