Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Knowledge Graph Tuning: Real-time Large Language Model Personalization based on Human Feedback (2405.19686v1)

Published 30 May 2024 in cs.AI

Abstract: LLMs have demonstrated remarkable proficiency in a range of natural language processing tasks. Once deployed, LLMs encounter users with personalized factual knowledge, and such personalized knowledge is consistently reflected through users' interactions with the LLMs. To enhance user experience, real-time model personalization is essential, allowing LLMs to adapt user-specific knowledge based on user feedback during human-LLM interactions. Existing methods mostly require back-propagation to finetune the model parameters, which incurs high computational and memory costs. In addition, these methods suffer from low interpretability, which will cause unforeseen impacts on model performance during long-term use, where the user's personalized knowledge is accumulated extensively.To address these challenges, we propose Knowledge Graph Tuning (KGT), a novel approach that leverages knowledge graphs (KGs) to personalize LLMs. KGT extracts personalized factual knowledge triples from users' queries and feedback and optimizes KGs without modifying the LLM parameters. Our method improves computational and memory efficiency by avoiding back-propagation and ensures interpretability by making the KG adjustments comprehensible to humans.Experiments with state-of-the-art LLMs, including GPT-2, Llama2, and Llama3, show that KGT significantly improves personalization performance while reducing latency and GPU memory costs. Ultimately, KGT offers a promising solution of effective, efficient, and interpretable real-time LLM personalization during user interactions with the LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper: