Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Quo Vadis ChatGPT? From Large Language Models to Large Knowledge Models (2405.19561v1)

Published 29 May 2024 in cs.AI and cs.CL

Abstract: The startling success of ChatGPT and other LLMs using transformer-based generative neural network architecture in applications such as natural language processing and image synthesis has many researchers excited about potential opportunities in process systems engineering (PSE). The almost human-like performance of LLMs in these areas is indeed very impressive, surprising, and a major breakthrough. Their capabilities are very useful in certain tasks, such as writing first drafts of documents, code writing assistance, text summarization, etc. However, their success is limited in highly scientific domains as they cannot yet reason, plan, or explain due to their lack of in-depth domain knowledge. This is a problem in domains such as chemical engineering as they are governed by fundamental laws of physics and chemistry (and biology), constitutive relations, and highly technical knowledge about materials, processes, and systems. Although purely data-driven machine learning has its immediate uses, the long-term success of AI in scientific and engineering domains would depend on developing hybrid AI systems that use first principles and technical knowledge effectively. We call these hybrid AI systems Large Knowledge Models (LKMs), as they will not be limited to only NLP-based techniques or NLP-like applications. In this paper, we discuss the challenges and opportunities in developing such systems in chemical engineering.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: