Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Leveraging Generative AI for Urban Digital Twins: A Scoping Review on the Autonomous Generation of Urban Data, Scenarios, Designs, and 3D City Models for Smart City Advancement (2405.19464v2)

Published 29 May 2024 in cs.AI

Abstract: The digital transformation of modern cities by integrating advanced information, communication, and computing technologies has marked the epoch of data-driven smart city applications for efficient and sustainable urban management. Despite their effectiveness, these applications often rely on massive amounts of high-dimensional and multi-domain data for monitoring and characterizing different urban sub-systems, presenting challenges in application areas that are limited by data quality and availability, as well as costly efforts for generating urban scenarios and design alternatives. As an emerging research area in deep learning, Generative AI models have demonstrated their unique values in data and code generation. This survey paper aims to explore the innovative integration of generative AI techniques and urban digital twins to address challenges in the realm of smart cities in various urban sectors, such as transportation and mobility management, energy system operations, building and infrastructure management, and urban design. The survey starts with the introduction of popular generative AI models with their application areas, followed by a structured review of the existing urban science applications that leverage the autonomous capability of the generative AI techniques to facilitate (a) data augmentation for promoting urban monitoring and predictive analytics, (b) synthetic data and scenario generation, (c) automated 3D city modeling, and (d) generative urban design and optimization. Based on the review, this survey discusses potential opportunities and technical strategies that integrate generative AI models into the next-generation urban digital twins for more reliable, scalable, and automated management of smart cities.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets