Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Learning Human-Aligned Representations with Contrastive Learning and Generative Similarity (2405.19420v3)

Published 29 May 2024 in cs.LG, cs.AI, and q-bio.NC

Abstract: Humans rely on effective representations to learn from few examples and abstract useful information from sensory data. Inducing such representations in machine learning models has been shown to improve their performance on various benchmarks such as few-shot learning and robustness. However, finding effective training procedures to achieve that goal can be challenging as psychologically rich training data such as human similarity judgments are expensive to scale, and Bayesian models of human inductive biases are often intractable for complex, realistic domains. Here, we address this challenge by leveraging a Bayesian notion of generative similarity whereby two data points are considered similar if they are likely to have been sampled from the same distribution. This measure can be applied to complex generative processes, including probabilistic programs. We incorporate generative similarity into a contrastive learning objective to enable learning of embeddings that express human cognitive representations. We demonstrate the utility of our approach by showing that it can be used to capture human-like representations of shape regularity, abstract Euclidean geometric concepts, and semantic hierarchies for natural images.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.