Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beyond Isolated Frames: Enhancing Sensor-Based Human Activity Recognition through Intra- and Inter-Frame Attention (2405.19349v1)

Published 21 May 2024 in eess.SP, cs.CV, cs.HC, and cs.LG

Abstract: Human Activity Recognition (HAR) has become increasingly popular with ubiquitous computing, driven by the popularity of wearable sensors in fields like healthcare and sports. While Convolutional Neural Networks (ConvNets) have significantly contributed to HAR, they often adopt a frame-by-frame analysis, concentrating on individual frames and potentially overlooking the broader temporal dynamics inherent in human activities. To address this, we propose the intra- and inter-frame attention model. This model captures both the nuances within individual frames and the broader contextual relationships across multiple frames, offering a comprehensive perspective on sequential data. We further enrich the temporal understanding by proposing a novel time-sequential batch learning strategy. This learning strategy preserves the chronological sequence of time-series data within each batch, ensuring the continuity and integrity of temporal patterns in sensor-based HAR.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets