Papers
Topics
Authors
Recent
2000 character limit reached

Relevance-aware Algorithmic Recourse (2405.19072v1)

Published 29 May 2024 in cs.LG

Abstract: As machine learning continues to gain prominence, transparency and explainability are increasingly critical. Without an understanding of these models, they can replicate and worsen human bias, adversely affecting marginalized communities. Algorithmic recourse emerges as a tool for clarifying decisions made by predictive models, providing actionable insights to alter outcomes. They answer, 'What do I have to change?' to achieve the desired result. Despite their importance, current algorithmic recourse methods treat all domain values equally, which is unrealistic in real-world settings. In this paper, we propose a novel framework, Relevance-Aware Algorithmic Recourse (RAAR), that leverages the concept of relevance in applying algorithmic recourse to regression tasks. We conducted multiple experiments on 15 datasets to outline how relevance influences recourses. Results show that relevance contributes algorithmic recourses comparable to well-known baselines, with greater efficiency and lower relative costs.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.