svds-C: A Multi-Thread C Code for Computing Truncated Singular Value Decomposition (2405.18966v1)
Abstract: This article presents svds-C, an open-source and high-performance C program for accurately and robustly computing truncated SVD, e.g. computing several largest singular values and corresponding singular vectors. We have re-implemented the algorithm of svds in Matlab in C based on MKL or OpenBLAS and multi-thread computing to obtain the parallel program named svds-C. svds-C running on shared-memory computer consumes less time and memory than svds thanks to careful implementation of multi-thread parallelization and memory management. Numerical experiments on different test cases which are synthetically generated or directly from real world datasets show that, svds-C runs remarkably faster than svds with averagely 4.7X and at most 12X speedup for 16-thread parallel computing on a computer with Intel CPU, while preserving same accuracy and consuming about half memory space. Experimental results also demonstrate that svds-C has similar advantages over svds on the computer with AMD CPU, and outperforms other state-of-the-art algorithms for truncated SVD on computing time and robustness.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.