Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Content-Agnostic Moderation for Stance-Neutral Recommendation (2405.18941v1)

Published 29 May 2024 in cs.IR and cs.LG

Abstract: Personalized recommendation systems often drive users towards more extreme content, exacerbating opinion polarization. While (content-aware) moderation has been proposed to mitigate these effects, such approaches risk curtailing the freedom of speech and of information. To address this concern, we propose and explore the feasibility of \emph{content-agnostic} moderation as an alternative approach for reducing polarization. Content-agnostic moderation does not rely on the actual content being moderated, arguably making it less prone to forms of censorship. We establish theoretically that content-agnostic moderation cannot be guaranteed to work in a fully generic setting. However, we show that it can often be effectively achieved in practice with plausible assumptions. We introduce two novel content-agnostic moderation methods that modify the recommendations from the content recommender to disperse user-item co-clusters without relying on content features. To evaluate the potential of content-agnostic moderation in controlled experiments, we built a simulation environment to analyze the closed-loop behavior of a system with a given set of users, recommendation system, and moderation approach. Through comprehensive experiments in this environment, we show that our proposed moderation methods significantly enhance stance neutrality and maintain high recommendation quality across various data scenarios. Our results indicate that achieving stance neutrality without direct content information is not only feasible but can also help in developing more balanced and informative recommendation systems without substantially degrading user engagement.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube