Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Anomaly Detection by Context Contrasting (2405.18848v2)

Published 29 May 2024 in cs.LG and cs.AI

Abstract: Anomaly detection focuses on identifying samples that deviate from the norm. When working with high-dimensional data such as images, a crucial requirement for detecting anomalous patterns is learning lower-dimensional representations that capture concepts of normality. Recent advances in self-supervised learning have shown great promise in this regard. However, many successful self-supervised anomaly detection methods assume prior knowledge about anomalies to create synthetic outliers during training. Yet, in real-world applications, we often do not know what to expect from unseen data, and we can solely leverage knowledge about normal data. In this work, we propose Con$_2$, which learns representations through context augmentations that allow us to observe samples from two distinct perspectives while keeping the invariances of normal data. Con$_2$ learns rich representations of context-augmented samples by clustering them according to their context while simultaneously aligning their positions across clusters. At test time, representations of anomalies that do not adhere to the invariances of normal data then deviate from their respective context cluster. Learning representations in such a way thus allows us to detect anomalies without making assumptions about anomalous data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets