Emergent Mind

Abstract

Differentially Private Stochastic Gradient Descent (DP-SGD) and its variants have been proposed to ensure rigorous privacy for fine-tuning large-scale pre-trained language models. However, they rely heavily on the Gaussian mechanism, which may overly perturb the gradients and degrade the accuracy, especially in stronger privacy regimes (e.g., the privacy budget $\epsilon < 3$). To address such limitations, we propose a novel Language Model-based Optimal Differential Privacy (LMO-DP) mechanism, which takes the first step to enable the tight composition of accurately fine-tuning (large) language models with a sub-optimal DP mechanism, even in strong privacy regimes (e.g., $0.1\leq \epsilon<3$). Furthermore, we propose a novel offline optimal noise search method to efficiently derive the sub-optimal DP that significantly reduces the noise magnitude. For instance, fine-tuning RoBERTa-large (with 300M parameters) on the SST-2 dataset can achieve an accuracy of 92.20% (given $\epsilon=0.3$, $\delta=10{-10}$) by drastically outperforming the Gaussian mechanism (e.g., $\sim 50\%$ for small $\epsilon$ and $\delta$). We also draw similar findings on the text generation tasks on GPT-2. Finally, to our best knowledge, LMO-DP is also the first solution to accurately fine-tune Llama-2 with strong differential privacy guarantees. The code will be released soon and available upon request.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.