Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

DeepHGNN: Study of Graph Neural Network based Forecasting Methods for Hierarchically Related Multivariate Time Series (2405.18693v1)

Published 29 May 2024 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNN) have gained significant traction in the forecasting domain, especially for their capacity to simultaneously account for intra-series temporal correlations and inter-series relationships. This paper introduces a novel Hierarchical GNN (DeepHGNN) framework, explicitly designed for forecasting in complex hierarchical structures. The uniqueness of DeepHGNN lies in its innovative graph-based hierarchical interpolation and an end-to-end reconciliation mechanism. This approach ensures forecast accuracy and coherence across various hierarchical levels while sharing signals across them, addressing a key challenge in hierarchical forecasting. A critical insight in hierarchical time series is the variance in forecastability across levels, with upper levels typically presenting more predictable components. DeepHGNN capitalizes on this insight by pooling and leveraging knowledge from all hierarchy levels, thereby enhancing the overall forecast accuracy. Our comprehensive evaluation set against several state-of-the-art models confirm the superior performance of DeepHGNN. This research not only demonstrates DeepHGNN's effectiveness in achieving significantly improved forecast accuracy but also contributes to the understanding of graph-based methods in hierarchical time series forecasting.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets