Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

When and How Does In-Distribution Label Help Out-of-Distribution Detection? (2405.18635v1)

Published 28 May 2024 in cs.LG

Abstract: Detecting data points deviating from the training distribution is pivotal for ensuring reliable machine learning. Extensive research has been dedicated to the challenge, spanning classical anomaly detection techniques to contemporary out-of-distribution (OOD) detection approaches. While OOD detection commonly relies on supervised learning from a labeled in-distribution (ID) dataset, anomaly detection may treat the entire ID data as a single class and disregard ID labels. This fundamental distinction raises a significant question that has yet to be rigorously explored: when and how does ID label help OOD detection? This paper bridges this gap by offering a formal understanding to theoretically delineate the impact of ID labels on OOD detection. We employ a graph-theoretic approach, rigorously analyzing the separability of ID data from OOD data in a closed-form manner. Key to our approach is the characterization of data representations through spectral decomposition on the graph. Leveraging these representations, we establish a provable error bound that compares the OOD detection performance with and without ID labels, unveiling conditions for achieving enhanced OOD detection. Lastly, we present empirical results on both simulated and real datasets, validating theoretical guarantees and reinforcing our insights. Code is publicly available at https://github.com/deeplearning-wisc/id_label.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube