Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Improved Emotional Alignment of AI and Humans: Human Ratings of Emotions Expressed by Stable Diffusion v1, DALL-E 2, and DALL-E 3 (2405.18510v1)

Published 28 May 2024 in cs.AI

Abstract: Generative AI systems are increasingly capable of expressing emotions via text and imagery. Effective emotional expression will likely play a major role in the efficacy of AI systems -- particularly those designed to support human mental health and wellbeing. This motivates our present research to better understand the alignment of AI expressed emotions with the human perception of emotions. When AI tries to express a particular emotion, how might we assess whether they are successful? To answer this question, we designed a survey to measure the alignment between emotions expressed by generative AI and human perceptions. Three generative image models (DALL-E 2, DALL-E 3 and Stable Diffusion v1) were used to generate 240 examples of images, each of which was based on a prompt designed to express five positive and five negative emotions across both humans and robots. 24 participants recruited from the Prolific website rated the alignment of AI-generated emotional expressions with a text prompt used to generate the emotion (i.e., "A robot expressing the emotion amusement"). The results of our evaluation suggest that generative AI models are indeed capable of producing emotional expressions that are well-aligned with a range of human emotions; however, we show that the alignment significantly depends upon the AI model used and the emotion itself. We analyze variations in the performance of these systems to identify gaps for future improvement. We conclude with a discussion of the implications for future AI systems designed to support mental health and wellbeing.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: