Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Decentralized Directed Collaboration for Personalized Federated Learning (2405.17876v1)

Published 28 May 2024 in cs.LG, cs.DC, and math.OC

Abstract: Personalized Federated Learning (PFL) is proposed to find the greatest personalized models for each client. To avoid the central failure and communication bottleneck in the server-based FL, we concentrate on the Decentralized Personalized Federated Learning (DPFL) that performs distributed model training in a Peer-to-Peer (P2P) manner. Most personalized works in DPFL are based on undirected and symmetric topologies, however, the data, computation and communication resources heterogeneity result in large variances in the personalized models, which lead the undirected aggregation to suboptimal personalized performance and unguaranteed convergence. To address these issues, we propose a directed collaboration DPFL framework by incorporating stochastic gradient push and partial model personalized, called \textbf{D}ecentralized \textbf{Fed}erated \textbf{P}artial \textbf{G}radient \textbf{P}ush (\textbf{DFedPGP}). It personalizes the linear classifier in the modern deep model to customize the local solution and learns a consensus representation in a fully decentralized manner. Clients only share gradients with a subset of neighbors based on the directed and asymmetric topologies, which guarantees flexible choices for resource efficiency and better convergence. Theoretically, we show that the proposed DFedPGP achieves a superior convergence rate of $\mathcal{O}(\frac{1}{\sqrt{T}})$ in the general non-convex setting, and prove the tighter connectivity among clients will speed up the convergence. The proposed method achieves state-of-the-art (SOTA) accuracy in both data and computation heterogeneity scenarios, demonstrating the efficiency of the directed collaboration and partial gradient push.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.