Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating NoSQL Databases for OLAP Workloads: A Benchmarking Study of MongoDB, Redis, Kudu and ArangoDB (2405.17731v1)

Published 28 May 2024 in cs.DB

Abstract: In the era of big data, conventional RDBMS models have become impractical for handling colossal workloads. Consequently, NoSQL databases have emerged as the preferred storage solutions for executing processing-intensive Online Analytical Processing (OLAP) tasks. Within the realm of NoSQL databases, various classifications exist based on their data storage mechanisms, making it challenging to select the most suitable one for a given OLAP workload. While each NoSQL database boasts distinct advantages, inherent scalability, adaptability to diverse data formats, and high data availability are universally recognized benefits crucial for managing OLAP workloads effectively. Existing research predominantly evaluates individual databases within custom data pipeline setups, lacking a standardized approach for comparative analysis across different databases to identify the optimal data pipeline for OLAP workloads. In this paper, we present our experimental insights into how various NoSQL databases handle OLAP workloads within a standardized data processing pipeline. Our experimental pipeline comprises Apache Spark for large-scale transformations, data cleansing, and schema normalization, diverse NoSQL databases as data stores, and a Business Intelligence tool for data analysis and visualization.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com