Papers
Topics
Authors
Recent
2000 character limit reached

Integrating Medical Imaging and Clinical Reports Using Multimodal Deep Learning for Advanced Disease Analysis (2405.17459v1)

Published 23 May 2024 in cs.LG, cs.AI, cs.CL, and cs.CV

Abstract: In this paper, an innovative multi-modal deep learning model is proposed to deeply integrate heterogeneous information from medical images and clinical reports. First, for medical images, convolutional neural networks were used to extract high-dimensional features and capture key visual information such as focal details, texture and spatial distribution. Secondly, for clinical report text, a two-way long and short-term memory network combined with an attention mechanism is used for deep semantic understanding, and key statements related to the disease are accurately captured. The two features interact and integrate effectively through the designed multi-modal fusion layer to realize the joint representation learning of image and text. In the empirical study, we selected a large medical image database covering a variety of diseases, combined with corresponding clinical reports for model training and validation. The proposed multimodal deep learning model demonstrated substantial superiority in the realms of disease classification, lesion localization, and clinical description generation, as evidenced by the experimental results.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.