Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 146 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semi-Federated Learning for Internet of Intelligence (2405.17453v1)

Published 22 May 2024 in cs.NI, cs.SY, and eess.SY

Abstract: One key vision of intelligent Internet of Things (IoT) is to provide connected intelligence for a large number of application scenarios, such as self-driving cars, industrial manufacturing, and smart city. However, existing centralized or federated learning paradigms have difficulties in coordinating heterogeneous resources in distributed IoT environments. In this article, we introduce a semi-federated learning (SemiFL) framework to tackle the challenges of data and device heterogeneity in massive IoT networks. In SemiFL, only users with sufficient computing resources are selected for local model training, while the remaining users only transmit raw data to the base station for remote computing. By doing so, SemiFL incorporates conventional centralized and federated learning paradigms into a harmonized framework that allows all devices to participate in the global model training regardless of their computational capabilities and data distributions. Furthermore, we propose a next-generation multiple access scheme by seamlessly integrating communication and computation over the air. This achieves the concurrent transmission of raw data and model parameters in a spectrum-efficient manner. With their abilities to change channels and charge devices, two emerging techniques, reconfigurable intelligent surface and wireless energy transfer, are merged with our SemiFL framework to enhance its performance in bandwidth- and energy-limited IoT networks, respectively. Simulation results are presented to demonstrate the superiority of our SemiFL for achieving edge intelligence among computing-heterogeneous IoT devices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube