Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel Fusion Architecture for PD Detection Using Semi-Supervised Speech Embeddings (2405.17206v2)

Published 21 May 2024 in cs.SD and cs.LG

Abstract: We present a framework to recognize Parkinson's disease (PD) through an English pangram utterance speech collected using a web application from diverse recording settings and environments, including participants' homes. Our dataset includes a global cohort of 1306 participants, including 392 diagnosed with PD. Leveraging the diversity of the dataset, spanning various demographic properties (such as age, sex, and ethnicity), we used deep learning embeddings derived from semi-supervised models such as Wav2Vec 2.0, WavLM, and ImageBind representing the speech dynamics associated with PD. Our novel fusion model for PD classification, which aligns different speech embeddings into a cohesive feature space, demonstrated superior performance over standard concatenation-based fusion models and other baselines (including models built on traditional acoustic features). In a randomized data split configuration, the model achieved an Area Under the Receiver Operating Characteristic Curve (AUROC) of 88.94% and an accuracy of 85.65%. Rigorous statistical analysis confirmed that our model performs equitably across various demographic subgroups in terms of sex, ethnicity, and age, and remains robust regardless of disease duration. Furthermore, our model, when tested on two entirely unseen test datasets collected from clinical settings and from a PD care center, maintained AUROC scores of 82.12% and 78.44%, respectively. This affirms the model's robustness and it's potential to enhance accessibility and health equity in real-world applications.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube