Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TopoLa: a novel embedding framework for understanding complex networks (2405.16928v1)

Published 27 May 2024 in cs.SI and cs.GT

Abstract: Complex networks, which are the abstractions of many real-world systems, present a persistent challenge across disciplines for people to decipher their underlying information. Recently, hyperbolic geometry of latent spaces has gained traction in network analysis, due to its ability to preserve certain local intrinsic properties of the nodes. In this study, we explore the problem from a much broader perspective: understanding the impact of nodes' global topological structures on latent space placements. Our investigations reveal a direct correlation between the topological structure of nodes and their positioning within the latent space. Building on this deep and strong connection between node distance and network topology, we propose a novel embedding framework called Topology-encoded Latent Hyperbolic Geometry (TopoLa) for analyzing complex networks. With the encoded topological information in the latent space, TopoLa is capable of enhancing both conventional and low-rank networks, using the singular value gap to clarify the mathematical principles behind this enhancement. Meanwhile, we show that the equipped TopoLa distance can also help augment pivotal deep learning models encompassing knowledge distillation and contrastive learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com