Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Study of Robust Direction Finding Based on Joint Sparse Representation (2405.16765v1)

Published 27 May 2024 in cs.LG and eess.SP

Abstract: Standard Direction of Arrival (DOA) estimation methods are typically derived based on the Gaussian noise assumption, making them highly sensitive to outliers. Therefore, in the presence of impulsive noise, the performance of these methods may significantly deteriorate. In this paper, we model impulsive noise as Gaussian noise mixed with sparse outliers. By exploiting their statistical differences, we propose a novel DOA estimation method based on sparse signal recovery (SSR). Furthermore, to address the issue of grid mismatch, we utilize an alternating optimization approach that relies on the estimated outlier matrix and the on-grid DOA estimates to obtain the off-grid DOA estimates. Simulation results demonstrate that the proposed method exhibits robustness against large outliers.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. H. Krim and M. Viberg, “Two decades of array signal processing research: the parametric approach,” IEEE signal processing magazine, vol. 13, no. 4, pp. 67–94, 1996.
  2. R. Schmidt, “Multiple emitter location and signal parameter estimation,” IEEE transactions on antennas and propagation, vol. 34, no. 3, pp. 276–280, 1986.
  3. L. Wang, R. C. de Lamare, and M. Haardt, “Direction finding algorithms based on joint iterative subspace optimization,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 4, pp. 2541–2553, 2014.
  4. L. Qiu, Y. Cai, R. C. de Lamare, and M. Zhao, “Reduced-rank doa estimation algorithms based on alternating low-rank decomposition,” IEEE Signal Processing Letters, vol. 23, no. 5, pp. 565–569, 2016.
  5. R. Roy and T. Kailath, “Esprit-estimation of signal parameters via rotational invariance techniques,” IEEE Transactions on acoustics, speech, and signal processing, vol. 37, no. 7, pp. 984–995, 1989.
  6. S. F. B. Pinto and R. C. de Lamare, “Multistep knowledge-aided iterative esprit: Design and analysis,” IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 5, pp. 2189–2201, 2018.
  7. P. Tsakalides and C. L. Nikias, “The robust covariation-based MUSIC (ROC-MUSIC) algorithm for bearing estimation in impulsive noise environments,” IEEE Transactions on Signal Processing, vol. 44, no. 7, pp. 1623–1633, 1996.
  8. T.-H. Liu and J. M. Mendel, “A subspace-based direction finding algorithm using fractional lower order statistics,” IEEE Transactions on Signal Processing, vol. 49, no. 8, pp. 1605–1613, 2001.
  9. W.-J. Zeng, H.-C. So, and L. Huang, “lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-MUSIC:Robust Direction-of-Arrival Estimator for Impulsive Noise Environments,” IEEE Transactions on Signal Processing, vol. 61, no. 17, pp. 4296–4308, 2013.
  10. F. Ma, H. Bai, X. Zhang, C. Xu, and Y. Li, “Generalised maximum complex correntropy-based DOA estimation in presence of impulsive noise,” IET Radar, Sonar & Navigation, vol. 14, no. 6, pp. 793–802, 2020.
  11. Y. Yang, Z. Du, Y. Wang, X. Guo, L. Yang, and J. Zhou, “Convex compressive beamforming with nonconvex sparse regularization,” The Journal of the Acoustical Society of America, vol. 149, no. 2, pp. 1125–1137, 2021.
  12. W. S. Leite and R. C. de Lamare, “List-based OMP and an enhanced model for DOA estimation with nonuniform arrays,” IEEE Trans. on Aerospace and Electronic Systems, vol. 57, no. 6, pp. 4457–4464, 2021.
  13. J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Transactions on information theory, vol. 53, no. 12, pp. 4655–4666, 2007.
  14. Q. Liu, H. C. So, and Y. Gu, “Off-grid doa estimation with nonconvex regularization via joint sparse representation,” Signal Processing, vol. 140, pp. 171–176, 2017.
  15. Z. Yang, L. Xie, and C. Zhang, “Off-grid direction of arrival estimation using sparse bayesian inference,” IEEE transactions on signal processing, vol. 61, no. 1, pp. 38–43, 2012.
  16. R. C. de Lamare and R. Sampaio-Neto, “Adaptive reduced-rank processing based on joint and iterative interpolation, decimation, and filtering,” IEEE Transactions on Signal Processing, vol. 57, no. 7, pp. 2503–2514, 2009.
  17. R. Fa, R. C. de Lamare, and L. Wang, “Reduced-rank stap schemes for airborne radar based on switched joint interpolation, decimation and filtering algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 8, pp. 4182–4194, 2010.
  18. S. Xu, R. C. de Lamare, and H. V. Poor, “Distributed compressed estimation based on compressive sensing,” IEEE Signal Processing Letters, vol. 22, no. 9, pp. 1311–1315, 2015.
  19. L. Liu and Z. Rao, “An adaptive Lp norm minimization algorithm for direction of arrival estimation,” Remote Sensing, vol. 14, no. 3, p. 766, 2022.
  20. X. Zhang, T. Jiang, Y. Li, and X. Liu, “An off-grid DOA estimation method using proximal splitting and successive nonconvex sparsity approximation,” IEEE Access, vol. 7, pp. 66 764–66 773, 2019.
  21. H. Huang, H. C. So, and A. M. Zoubir, “Off-grid direction-of-arrival estimation using second-order Taylor approximation,” Signal Processing, vol. 196, p. 108513, 2022.
  22. K. Suzuki and M. Yukawa, “Robust recovery of jointly-sparse signals using minimax concave loss function,” IEEE Transactions on Signal Processing, vol. 69, pp. 669–681, 2020.
  23. F. Wen, P. Liu, Y. Liu, R. C. Qiu, and W. Yu, “Robust Sparse Recovery in Impulsive Noise via lpsubscript𝑙𝑝l_{p}italic_l start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT-l1subscript𝑙1l_{1}italic_l start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT Optimization,” IEEE Transactions on Signal Processing, vol. 65, no. 1, pp. 105–118, 2016.
  24. K. Suzuki and M. Yukawa, “Sparse stable outlier-robust signal recovery under Gaussian noise,” IEEE Transactions on Signal Processing, vol. 71, pp. 372–387, 2023.
  25. J. Dai and H. C. So, “Sparse Bayesian Learning Approach for Outlier-Resistant Direction-of-Arrival Estimation,” IEEE Transactions on Signal Processing, vol. 66, no. 3, pp. 744–756, 2017.
  26. H. Zhang, X. Liu, C. Liu, H. Fan, Y. Li, and X. Zhu, “Tensor Recovery Based on A Novel Non-convex Function Minimax Logarithmic Concave Penalty Function,” IEEE Transactions on Image Processing, 2023.
  27. E. Ollila, “Multichannel sparse recovery of complex-valued signals using huber’s criterion,” in 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).   IEEE, 2015, pp. 26–30.
  28. H. Lu, X. Long, and J. Lv, “A fast algorithm for recovery of jointly sparse vectors based on the alternating direction methods,” in Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics.   JMLR Workshop and Conference Proceedings, 2011, pp. 461–469.
  29. A. Gretsistas and M. D. Plumbley, “An alternating descent algorithm for the off-grid doa estimation problem with sparsity constraints,” in 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).   IEEE, 2012, pp. 874–878.
  30. C. F. Mecklenbräuker, P. Gerstoft, E. Ollila, and Y. Park, “Robust and Sparse M-Estimation of DOA,” arXiv preprint arXiv:2301.06213, 2023.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com