Papers
Topics
Authors
Recent
2000 character limit reached

REVECA: Adaptive Planning and Trajectory-based Validation in Cooperative Language Agents using Information Relevance and Relative Proximity (2405.16751v2)

Published 27 May 2024 in cs.AI, cs.CL, cs.CV, and cs.MA

Abstract: We address the challenge of multi-agent cooperation, where agents achieve a common goal by cooperating with decentralized agents under complex partial observations. Existing cooperative agent systems often struggle with efficiently processing continuously accumulating information, managing globally suboptimal planning due to lack of consideration of collaborators, and addressing false planning caused by environmental changes introduced by other collaborators. To overcome these challenges, we propose the RElevance, Proximity, and Validation-Enhanced Cooperative Language Agent (REVECA), a novel cognitive architecture powered by GPT-4o-mini. REVECA enables efficient memory management, optimal planning, and cost-effective prevention of false planning by leveraging Relevance Estimation, Adaptive Planning, and Trajectory-based Validation. Extensive experimental results demonstrate REVECA's superiority over existing methods across various benchmarks, while a user study reveals its potential for achieving trustworthy human-AI cooperation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.