Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Link Prediction on Textual Edge Graphs (2405.16606v2)

Published 26 May 2024 in cs.SI

Abstract: Textual-edge Graphs (TEGs), characterized by rich text annotations on edges, are increasingly significant in network science due to their ability to capture rich contextual information among entities. Existing works have proposed various edge-aware graph neural networks (GNNs) or let LLMs directly make predictions. However, they often fall short of fully capturing the contextualized semantics on edges and graph topology, respectively. This inadequacy is particularly evident in link prediction tasks that require a comprehensive understanding of graph topology and semantics between nodes. In this paper, we present a novel framework - Link2Doc, designed especially for link prediction on textual-edge graphs. Specifically, we propose to summarize neighborhood information between node pairs as a human-written document to preserve both semantic and topology information. A self-supervised learning model is then utilized to enhance GNN's text-understanding ability from LLMs. Empirical evaluations, including link prediction, edge classification, parameter analysis, runtime comparison, and ablation studies, on four real-world datasets demonstrate that Link2Doc achieves generally better performance against existing edge-aware GNNs and pre-trained LLMs in predicting links on TEGs.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube