Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weighted sampling recovery of functions with mixed smoothness (2405.16400v1)

Published 26 May 2024 in math.NA and cs.NA

Abstract: We study sparse-grid linear sampling algorithms and their optimality for approximate recovery of functions with mixed smoothness on $\mathbb{R}d$ from a set of $n$ their sampled values in two different settings: (i) functions to be recovered are in weighted Sobolev spaces $Wr_{p,w}(\mathbb{R}d)$ of mixed smoothness and the approximation error is measured by the norm of the weighted Lebesgue space $L_{q,w}(\mathbb{R}d)$, and (ii) functions to be recovered are in Sobolev spaces with measure $Wr_p(\mathbb{R}d; \mu_w)$ of mixed smoothness and the approximation error is measured by the norm of the Lebesgue space with measure $L_q(\mathbb{R}d; \mu_w)$. Here, the function $w$, a tensor-product Freud-type weight is the weight in the setting (i), and the density function of the measure $\mu_w$ in the setting (ii). The optimality of linear sampling algorithms is investigated in terms of the relevant sampling $n$-widths. We construct sparse-grid linear sampling algorithms which are completely different for the settings (i) and (ii) and which give upper bounds of the corresponding sampling $n$-widths. We prove that in the one-dimensional case, these algorithms realize the right convergence rate of the sampling widths. In the setting (ii) for the high dimensional case ($d\ge 2$), we also achieve the right convergence rate of the sampling $n$-widths for $1\le q \le 2 \le p \le \infty$ through a non-constructive method.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. S. Bonan. Applications of G. Freud’s theory, I. Approximation Theory, IV (C. K. Chui et al., Eds.), Acad. Press, pages pp. 347–351, 1984.
  2. S. Bonan and P. Nevai. Orthogonal polynomials and their derivative. J. Approx. Theory, 40:134–147, 1984.
  3. H. J. Bungartz and M. Griebel. Sparse grids. Acta Numer., 13:147–269, 2004.
  4. C. K. Chui. An Introduction to Wavelets. Academic Press, 1992.
  5. D. Dũng. B-spline quasi-interpolation sampling representation and sampling recovery in Sobolev spaces of mixed smoothness. Acta Math. Vietnamica, 43:83–110, 2018.
  6. D. Dũng. Numerical weighted integration of functions having mixed smoothness. J. Complexity, 78:101757, 2023.
  7. D. Dũng. Sparse-grid sampling recovery and numerical integration of functions having mixed smoothness. arXiv: 2309.04994, 2023.
  8. D. Dũng. B-spline quasi-interpolant representations and sampling recovery of functions with mixed smoothness. J. Complexity, 27:541–567, 2011.
  9. D. Dũng. Optimal adaptive sampling recovery. Adv. Comput. Math, 34:1–41, 2011.
  10. D. Dũng and V. K. Nguyen. Optimal numerical integration and approximation of functions on ℝdsuperscriptℝ𝑑\mathbb{R}^{d}blackboard_R start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT equipped with Gaussian measure. IMA Journal of Numer. Anal., 44:1242–1267, 2024.
  11. Hyperbolic Cross Approximation. Advanced Courses in Mathematics - CRM Barcelona, Birkhäuser/Springer, 2018.
  12. B. Della Vecchia and G. Mastroianni. Gaussian rules on unbounded intervals. J. Complexity, 19:247–258, 2003.
  13. On the optimal order of integration in Hermite spaces with finite smoothness. SIAM J. Numer. Anal., 56:684–707, 2018.
  14. A sharp upper bound for sampling numbers in L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Appl. Comput. Harmon. Anal., 63:113–134, 2023.
  15. G. Freud. On the coefficients in the recursion formulae of orthogonal polynomials. Proc. R. Irish Acad., Sect. A, 76:1–6, 1976.
  16. Weighted Polynomial Approximation and Numerical Methods for Integral Equations. Birkhäuser, 2021.
  17. D. S. Lubinsky. A survey of weighted polynomial approximation with exponential weights. Surveys in Approximation Theory, 3:1–105, 2007.
  18. G. Mastroianni and I. Notarangelo. A Lagrange-type projector on the real line. Math. Comput., 79(269):327–352, 2010.
  19. G. Mastroianni and J. Szabados. Polynomial approximation on the real semiaxis with generalized Laguerre weights . Stud. Univ. Babes-Bolyai Math., 52(4):105–128, 2007.
  20. H. N. Mhaskar. Introduction to the Theory of Weighted Polynomial Approximation. World Scientific, Singapore, 1996.
  21. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems, Volume II: Standard Information for Functionals. EMS Tracts in Mathematics, Vol. 12, Eur. Math. Soc. Publ. House, Zürich, 2010.
  22. S. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of functions. Dokl. Akad. Nauk, 148:1042–1045, 1963.
  23. E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Univ. Press, Princeton, NJ, 1970.
  24. V. N. Temlyakov. Approximation of periodic functions of several variables by trigonometric polynomials, and widths of some classes of functions. Izv. Akad. Nauk SSSR, 49:986–1030, 1985 (English transl. in Math. USSR Izv., 27, 1986).
  25. V. N. Temlyakov. Multivariate Approximation. Cambridge University Press, 2018.
  26. V. M. Tikhomirov. Some Problems in Approximation Theory. Moscow State Univ., 1976 (in Russian).
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com