Emergent Mind

Feature Protection For Out-of-distribution Generalization

(2405.16027)
Published May 25, 2024 in cs.LG

Abstract

With the availability of large pre-trained models, a modern workflow for building real-world machine learning solutions is to fine-tune such models on a downstream task with a relatively small domain-specific dataset. In such applications, one major challenge is that the small fine-tuning dataset does not have sufficient coverage of the distribution encountered when the model is deployed. It is thus important to design fine-tuning methods that are robust to out-of-distribution (OOD) data that are under-represented by the training data. This paper compares common fine-tuning methods to investigate their OOD performance and demonstrates that standard methods will result in a significant change to the pre-trained model so that the fine-tuned features overfit the fine-tuning dataset. However, this causes deteriorated OOD performance. To overcome this issue, we show that protecting pre-trained features leads to a fine-tuned model more robust to OOD generalization. We validate the feature protection methods with extensive experiments of fine-tuning CLIP on ImageNet and DomainNet.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.