Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A hierarchical Bayesian model for syntactic priming (2405.15964v1)

Published 24 May 2024 in cs.CL

Abstract: The effect of syntactic priming exhibits three well-documented empirical properties: the lexical boost, the inverse frequency effect, and the asymmetrical decay. We aim to show how these three empirical phenomena can be reconciled in a general learning framework, the hierarchical Bayesian model (HBM). The model represents syntactic knowledge in a hierarchical structure of syntactic statistics, where a lower level represents the verb-specific biases of syntactic decisions, and a higher level represents the abstract bias as an aggregation of verb-specific biases. This knowledge is updated in response to experience by Bayesian inference. In simulations, we show that the HBM captures the above-mentioned properties of syntactic priming. The results indicate that some properties of priming which are usually explained by a residual activation account can also be explained by an implicit learning account. We also discuss the model's implications for the lexical basis of syntactic priming.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: