Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Diff-DTI: Fast Diffusion Tensor Imaging Using A Feature-Enhanced Joint Diffusion Model (2405.15830v1)

Published 24 May 2024 in eess.IV

Abstract: Magnetic resonance diffusion tensor imaging (DTI) is a critical tool for neural disease diagnosis. However, long scan time greatly hinders the widespread clinical use of DTI. To accelerate image acquisition, a feature-enhanced joint diffusion model (Diff-DTI) is proposed to obtain accurate DTI parameter maps from a limited number of diffusion-weighted images (DWIs). Diff-DTI introduces a joint diffusion model that directly learns the joint probability distribution of DWIs with DTI parametric maps for conditional generation. Additionally, a feature enhancement fusion mechanism (FEFM) is designed and incorporated into the generative process of Diff-DTI to preserve fine structures in the generated DTI maps. A comprehensive evaluation of the performance of Diff-DTI was conducted on the Human Connectome Project dataset. The results demonstrate that Diff-DTI outperforms existing state-of-the-art fast DTI imaging methods in terms of visual quality and quantitative metrics. Furthermore, Diff-DTI has shown the ability to produce high-fidelity DTI maps with only three DWIs, thus overcoming the requirement of a minimum of six DWIs for DTI.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. R. Bammer, “Basic principles of diffusion-weighted imaging,” European Journal of Radiology, vol. 45, no. 3, pp. 169–184, 2003.
  2. P. J. Basser, J. Mattiello, and D. LeBihan, “Estimation of the effective self-diffusion tensor from the nmr spin echo,” Journal of Magnetic Resonance, Series B, vol. 103, no. 3, pp. 247–254, 1994.
  3. D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat, “Diffusion tensor imaging: concepts and applications,” Journal of Magnetic Resonance Imaging: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 13, no. 4, pp. 534–546, 2001.
  4. A. L. Alexander, J. E. Lee, M. Lazar, and A. S. Field, “Diffusion tensor imaging of the brain,” Neurotherapeutics, vol. 4, no. 3, pp. 316–329, 2007.
  5. H. Jiang, P. C. Van Zijl, J. Kim, G. D. Pearlson, and S. Mori, “Dtistudio: resource program for diffusion tensor computation and fiber bundle tracking,” Computer Methods and Programs in Biomedicine, vol. 81, no. 2, pp. 106–116, 2006.
  6. J. Wilmskoetter, X. He, L. Caciagli, J. H. Jensen, B. Marebwa, K. A. Davis, J. Fridriksson, A. Basilakos, L. P. Johnson, C. Rorden et al., “Language recovery after brain injury: a structural network control theory study,” Journal of Neuroscience, vol. 42, no. 4, pp. 657–669, 2022.
  7. Y. Chen, Y. Wang, Z. Song, Y. Fan, T. Gao, and X. Tang, “Abnormal white matter changes in alzheimer’s disease based on diffusion tensor imaging: A systematic review,” Ageing Research Reviews, p. 101911, 2023.
  8. J. R. Harrison, S. Bhatia, Z. X. Tan, A. Mirza-Davies, H. Benkert, C. M. Tax, and D. K. Jones, “Imaging alzheimer’s genetic risk using diffusion mri: A systematic review,” NeuroImage: Clinical, vol. 27, p. 102359, 2020.
  9. P. F. Ferreira, P. J. Kilner, L.-A. McGill, S. Nielles-Vallespin, A. D. Scott, S. Y. Ho, K. P. McCarthy, M. M. Haba, T. F. Ismail, P. D. Gatehouse et al., “In vivo cardiovascular magnetic resonance diffusion tensor imaging shows evidence of abnormal myocardial laminar orientations and mobility in hypertrophic cardiomyopathy,” Journal of Cardiovascular Magnetic Resonance, vol. 16, no. 1, p. 87, 2014.
  10. D. K. Jones, “The effect of gradient sampling schemes on measures derived from diffusion tensor mri: a monte carlo study,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 51, no. 4, pp. 807–815, 2004.
  11. D. K. Jones, T. R. Knösche, and R. Turner, “White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion mri,” Neuroimage, vol. 73, pp. 239–254, 2013.
  12. B. A. Landman, J. A. Farrell, C. K. Jones, S. A. Smith, J. L. Prince, and S. Mori, “Effects of diffusion weighting schemes on the reproducibility of dti-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 t,” Neuroimage, vol. 36, no. 4, pp. 1123–1138, 2007.
  13. R. H. Fick, D. Wassermann, E. Caruyer, and R. Deriche, “Mapl: Tissue microstructure estimation using laplacian-regularized map-mri and its application to hcp data,” NeuroImage, vol. 134, pp. 365–385, 2016.
  14. D. K. Jones, “Gaussian modeling of the diffusion signal,” in Diffusion MRI.   Elsevier, 2014, pp. 87–104.
  15. S. Basu, T. Fletcher, and R. Whitaker, “Rician noise removal in diffusion tensor mri,” in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2006: 9th International Conference, Copenhagen, Denmark, October 1-6, 2006. Proceedings, Part I 9.   Springer, 2006, pp. 117–125.
  16. M. Aksoy, C. Forman, M. Straka, S. Skare, S. Holdsworth, J. Hornegger, and R. Bammer, “Real-time optical motion correction for diffusion tensor imaging,” Magnetic Resonance in Medicine, vol. 66, no. 2, pp. 366–378, 2011.
  17. T. Jeon, M. M. Fung, K. M. Koch, E. T. Tan, and D. B. Sneag, “Peripheral nerve diffusion tensor imaging: overview, pitfalls, and future directions,” Journal of Magnetic Resonance Imaging, vol. 47, no. 5, pp. 1171–1189, 2018.
  18. M. I. Menzel, E. T. Tan, K. Khare, J. I. Sperl, K. F. King, X. Tao, C. J. Hardy, and L. Marinelli, “Accelerated diffusion spectrum imaging in the human brain using compressed sensing,” Magnetic Resonance in Medicine, vol. 66, no. 5, pp. 1226–1233, 2011.
  19. Y. Zhu, X. Peng, Y. Wu, E. X. Wu, L. Ying, X. Liu, H. Zheng, and D. Liang, “Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints,” Medical Physics, vol. 44, no. 2, pp. 570–580, 2017.
  20. J. Huang, L. Wang, C. Chu, W. Liu, and Y. Zhu, “Accelerating cardiac diffusion tensor imaging combining local low-rank and 3d tv constraint,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 32, pp. 407–422, 2019.
  21. I. Teh, D. McClymont, E. Carruth, J. Omens, A. McCulloch, and J. E. Schneider, “Improved compressed sensing and super-resolution of cardiac diffusion mri with structure-guided total variation,” Magnetic Resonance in Medicine, vol. 84, no. 4, pp. 1868–1880, 2020.
  22. G. Varela-Mattatall, P. I. Dubovan, T. Santini, K. M. Gilbert, R. S. Menon, and C. A. Baron, “Single-shot spiral diffusion-weighted imaging at 7t using expanded encoding with compressed sensing,” Magnetic Resonance in Medicine, vol. 90, no. 2, pp. 615–623, 2023.
  23. A. Waters, A. Sankaranarayanan, and R. Baraniuk, “Sparcs: Recovering low-rank and sparse matrices from compressive measurements,” Advances in Neural Information Processing Systems, vol. 24, 2011.
  24. J. H. Jensen, J. A. Helpern, A. Ramani, H. Lu, and K. Kaczynski, “Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 53, no. 6, pp. 1432–1440, 2005.
  25. V. Golkov, A. Dosovitskiy, J. I. Sperl, M. I. Menzel, M. Czisch, P. Sämann, T. Brox, and D. Cremers, “Q-space deep learning: twelve-fold shorter and model-free diffusion mri scans,” IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1344–1351, 2016.
  26. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer-assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18.   Springer, 2015, pp. 234–241.
  27. Q. Tian, B. Bilgic, Q. Fan, C. Liao, C. Ngamsombat, Y. Hu, T. Witzel, K. Setsompop, J. R. Polimeni, and S. Y. Huang, “Deepdti: High-fidelity six-direction diffusion tensor imaging using deep learning,” NeuroImage, vol. 219, p. 117017, 2020.
  28. H. Li, Z. Liang, C. Zhang, R. Liu, J. Li, W. Zhang, D. Liang, B. Shen, X. Zhang, Y. Ge et al., “Superdti: Ultrafast dti and fiber tractography with deep learning,” Magnetic Resonance in Medicine, vol. 86, no. 6, pp. 3334–3347, 2021.
  29. D. Karimi and A. Gholipour, “Diffusion tensor estimation with transformer neural networks,” Artificial Intelligence in Medicine, vol. 130, p. 102330, 2022.
  30. J. Wang, Z. Chen, C. Cai, and S. Cai, “Ultrafast diffusion tensor imaging based on deep learning and multi-slice information sharing,” Physics in Medicine & Biology, vol. 69, no. 3, p. 035011, 2024.
  31. Z. Li, Q. Fan, B. Bilgic, G. Wang, W. Wu, J. R. Polimeni, K. L. Miller, S. Y. Huang, and Q. Tian, “Diffusion mri data analysis assisted by deep learning synthesized anatomical images (deepanat),” Medical Image Analysis, vol. 86, p. 102744, 2023.
  32. S. Liu, Y. Liu, X. Xu, R. Chen, D. Liang, Q. Jin, H. Liu, G. Chen, and Y. Zhu, “Accelerated cardiac diffusion tensor imaging using deep neural network,” Physics in Medicine & Biology, vol. 68, no. 2, p. 025008, 2023.
  33. D. T. Huff, A. J. Weisman, and R. Jeraj, “Interpretation and visualization techniques for deep learning models in medical imaging,” Physics in Medicine & Biology, vol. 66, no. 4, p. 04TR01, 2021.
  34. P. Dhariwal and A. Nichol, “Diffusion models beat gans on image synthesis,” Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794, 2021.
  35. H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li, “A survey on generative diffusion models,” IEEE Transactions on Knowledge and Data Engineering, 2024.
  36. L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang, B. Cui, and M.-H. Yang, “Diffusion models: A comprehensive survey of methods and applications,” ACM Computing Surveys, vol. 56, no. 4, pp. 1–39, 2023.
  37. J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020.
  38. Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole, “Score-based generative modeling through stochastic differential equations,” in 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021.   OpenReview.net, 2021. [Online]. Available: https://openreview.net/forum?id=PxTIG12RRHS
  39. H. Chung and J. C. Ye, “Score-based diffusion models for accelerated mri,” Medical Image Analysis, vol. 80, p. 102479, 2022.
  40. Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in medical imaging with score-based generative models,” in The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.   OpenReview.net, 2022. [Online]. Available: https://openreview.net/forum?id=vaRCHVj0uGI
  41. J. Wolleb, F. Bieder, R. Sandkühler, and P. C. Cattin, “Diffusion models for medical anomaly detection,” in International Conference on Medical image computing and computer-assisted intervention.   Springer, 2022, pp. 35–45.
  42. J. S. Yoon, C. Zhang, H.-I. Suk, J. Guo, and X. Li, “Sadm: Sequence-aware diffusion model for longitudinal medical image generation,” in International Conference on Information Processing in Medical Imaging.   Springer, 2023, pp. 388–400.
  43. W. Wang, Z.-X. Cui, G. Cheng, C. Cao, X. Xu, Z. Liu, H. Wang, Y. Qi, D. Liang, and Y. Zhu, “A two-stage generative model with cyclegan and joint diffusion for mri-based brain tumor detection,” IEEE Journal of Biomedical and Health Informatics, 2024.
  44. C. Cao, Z.-X. Cui, Y. Wang, S. Liu, T. Chen, H. Zheng, D. Liang, and Y. Zhu, “High-frequency space diffusion model for accelerated mri,” IEEE Transactions on Medical Imaging, 2024.
  45. Y. Song and S. Ermon, “Improved techniques for training score-based generative models,” in Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., 2020. [Online]. Available: https://proceedings.neurips.cc/paper/2020/hash/92c3b916311a5517d9290576e3ea37ad-Abstract.html
  46. J. S. Elam, M. F. Glasser, M. P. Harms, S. N. Sotiropoulos, J. L. Andersson, G. C. Burgess, S. W. Curtiss, R. Oostenveld, L. J. Larson-Prior, J.-M. Schoffelen et al., “The human connectome project: a retrospective,” NeuroImage, vol. 244, p. 118543, 2021.
  47. M. Maggioni, V. Katkovnik, K. Egiazarian, and A. Foi, “Nonlocal transform-domain filter for volumetric data denoising and reconstruction,” IEEE Transactions on Image Processing, vol. 22, no. 1, pp. 119–133, 2012.
  48. J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” in Proceedings of The IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
  49. S. Loizillon, S. Mabille, S. Bottani, Y. Jacob, A. Maire, S. Ströer, D. Dormont, O. Colliot, and N. Burgos, “Leveraging noise and contrast simulation for the automatic quality control of routine clinical t1-weighted brain mri,” in Medical Imaging 2024: Image Processing, vol. 12926.   SPIE, 2024, pp. 322–326.
  50. S. Loizillon, Y. Jacob, M. Aurélien, D. Dormont, O. Colliot, N. Burgos, A. S. Group et al., “Detecting brain anomalies in clinical routine with the β𝛽\betaitalic_β-vae: Feasibility study on age-related white matter hyperintensities,” in Medical Imaging with Deep Learning, 2024.
  51. J. Robertson, J. Urban, J. Stitzel, and B. E. Treeby, “The effects of image homogenisation on simulated transcranial ultrasound propagation,” Physics in Medicine & Biology, vol. 63, no. 14, p. 145014, 2018.
  52. G.-Y. Youm, S.-H. Bae, and M. Kim, “Image super-resolution based on convolution neural networks using multi-channel input,” in 2016 IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).   IEEE, 2016, pp. 1–5.
  53. R. Souza, M. Bento, N. Nogovitsyn, K. J. Chung, W. Loos, R. M. Lebel, and R. Frayne, “Dual-domain cascade of u-nets for multi-channel magnetic resonance image reconstruction,” Magnetic Resonance Imaging, vol. 71, pp. 140–153, 2020.
  54. Q. Lyu and G. Wang, “Conversion between ct and mri images using diffusion and score-matching models,” 2022.
  55. Z. Li, Z. Li, B. Bilgic, H.-H. Lee, K. Ying, S. Y. Huang, H. Liao, and Q. Tian, “Dimond: Diffusion model optimization with deep learning,” Advanced Science, p. 2307965, 2024.
  56. R. Chen, D. Pu, Y. Tong, and M. Wu, “Image-denoising algorithm based on improved k-singular value decomposition and atom optimization,” CAAI Transactions on Intelligence Technology, vol. 7, no. 1, pp. 117–127, 2022.
  57. Z. Luo, F. K. Gustafsson, Z. Zhao, J. Sjölund, and T. B. Schön, “Refusion: Enabling large-size realistic image restoration with latent-space diffusion models,” in Proceedings of The IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1680–1691.
  58. J. Kim and H. Park, “Adaptive latent diffusion model for 3d medical image to image translation: Multi-modal magnetic resonance imaging study,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2024, pp. 7604–7613.
  59. Y. Zhang, C. Li, L. Zhong, Z. Chen, W. Yang, and X. Wang, “Dosediff: Distance-aware diffusion model for dose prediction in radiotherapy,” IEEE Transactions on Medical Imaging, 2024.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com