Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 129 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Uniform Algebras: Models and constructive Completeness for Full, Simply Typed λProlog (2405.15822v1)

Published 23 May 2024 in cs.PL, cs.LO, and math.LO

Abstract: This paper introduces a model theory for resolution on Higher Order Hereditarily Harrop formulae (HOHH), the logic underlying the Lambda-Prolog programming language, and proves soundness and completeness of resolution. The semantics and the proof of completeness of the formal system is shown in several ways, suitably adapted to deal with the impredicativity of higher-order logic, which rules out definitions of truth based on induction on formula structure. First, we use the least fixed point of a certain operator on interpretations, in the style of Apt and Van Emden, Then a constructive completeness theorem is given using a proof theoretic variant of the Lindenbaum algebra, which also contains a new approach to establishing cut-elimination.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.