Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

The Radical Solution and Computational Complexity (2405.15790v1)

Published 4 May 2024 in cs.CC

Abstract: The radical solution of polynomials with rational coefficients is a famous solved problem. This paper found that it is a $\mathbb{NP}$ problem. Furthermore, this paper found that arbitrary $ \mathscr{P} \in \mathbb{P}$ shall have a one-way running graph $G$, and have a corresponding $\mathscr{Q} \in \mathbb{NP}$ which have a two-way running graph $G'$, $G$ and $G'$ is isomorphic, i.e., $G'$ is combined by $G$ and its reverse $G{-1}$. When $\mathscr{P}$ is an algorithm for solving polynomials, $G{-1}$ is the radical formula. According to Galois' Theory, a general radical formula does not exist. Therefore, there exists an $\mathbb{NP}$, which does not have a general, deterministic and polynomial time-complexity algorithm, i.e., $\mathbb{P} \neq \mathbb{NP}$. Moreover, this paper pointed out that this theorem actually is an impossible trinity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

X Twitter Logo Streamline Icon: https://streamlinehq.com