Papers
Topics
Authors
Recent
2000 character limit reached

Sequence Length Scaling in Vision Transformers for Scientific Images on Frontier (2405.15780v1)

Published 17 Apr 2024 in cs.CV and cs.LG

Abstract: Vision Transformers (ViTs) are pivotal for foundational models in scientific imagery, including Earth science applications, due to their capability to process large sequence lengths. While transformers for text has inspired scaling sequence lengths in ViTs, yet adapting these for ViTs introduces unique challenges. We develop distributed sequence parallelism for ViTs, enabling them to handle up to 1M tokens. Our approach, leveraging DeepSpeed-Ulysses and Long-Sequence-Segmentation with model sharding, is the first to apply sequence parallelism in ViT training, achieving a 94% batch scaling efficiency on 2,048 AMD-MI250X GPUs. Evaluating sequence parallelism in ViTs, particularly in models up to 10B parameters, highlighted substantial bottlenecks. We countered these with hybrid sequence, pipeline, tensor parallelism, and flash attention strategies, to scale beyond single GPU memory limits. Our method significantly enhances climate modeling accuracy by 20% in temperature predictions, marking the first training of a transformer model on a full-attention matrix over 188K sequence length.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.