Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Case Study of LLM for Automated Vulnerability Repair: Assessing Impact of Reasoning and Patch Validation Feedback (2405.15690v1)

Published 24 May 2024 in cs.SE

Abstract: Recent work in automated program repair (APR) proposes the use of reasoning and patch validation feedback to reduce the semantic gap between the LLMs and the code under analysis. The idea has been shown to perform well for general APR, but its effectiveness in other particular contexts remains underexplored. In this work, we assess the impact of reasoning and patch validation feedback to LLMs in the context of vulnerability repair, an important and challenging task in security. To support the evaluation, we present VRpilot, an LLM-based vulnerability repair technique based on reasoning and patch validation feedback. VRpilot (1) uses a chain-of-thought prompt to reason about a vulnerability prior to generating patch candidates and (2) iteratively refines prompts according to the output of external tools (e.g., compiler, code sanitizers, test suite, etc.) on previously-generated patches. To evaluate performance, we compare VRpilot against the state-of-the-art vulnerability repair techniques for C and Java using public datasets from the literature. Our results show that VRpilot generates, on average, 14% and 7.6% more correct patches than the baseline techniques on C and Java, respectively. We show, through an ablation study, that reasoning and patch validation feedback are critical. We report several lessons from this study and potential directions for advancing LLM-empowered vulnerability repair

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com