Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Comparative Analysis of Distributed Training Strategies for GPT-2 (2405.15628v1)

Published 24 May 2024 in cs.DC

Abstract: The rapid advancement in LLMs has been met with significant challenges in their training processes, primarily due to their considerable computational and memory demands. This research examines parallelization techniques developed to address these challenges, enabling the efficient and scalable training of LLMs. A comprehensive analysis of both data and model parallelism strategies, including Fully Sharded Data Parallelism and Distributed Data-Parallel frameworks, is provided to assess methods that facilitate efficient model training. Furthermore, the architectural complexities and training methodologies of the Generative Pre-Trained Transformer-2 model are explored. The application of these strategies is further investigated, which is crucial in managing the substantial computational and memory demands of training sophisticated models. This analysis not only highlights the effectiveness of these parallel training strategies in enhancing training efficiency but also their role in enabling the scalable training of LLMs. Drawing on recent research findings, through a comprehensive literature review, this research underscores the critical role of parallelization techniques in addressing the computational challenges of training state-of-the-art LLMs, thereby contributing to the advancement of training more sophisticated and capable artificial intelligence systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: