Randomized heuristic repair for large-scale multidimensional knapsack problem (2405.15569v1)
Abstract: The multidimensional knapsack problem (MKP) is an NP-hard combinatorial optimization problem whose solution is determining a subset of maximum total profit items that do not violate capacity constraints. Due to its hardness, large-scale MKP instances are usually a target for metaheuristics, a context in which effective feasibility maintenance strategies are crucial. In 1998, Chu and Beasley proposed an effective heuristic repair that is still relevant for recent metaheuristics. However, due to its deterministic nature, the diversity of solutions such heuristic provides is insufficient for long runs. As a result, the search for new solutions ceases after a while. This paper proposes an efficiency-based randomization strategy for the heuristic repair that increases the variability of the repaired solutions without deteriorating quality and improves the overall results.
- Improved binary artificial fish swarm algorithm for the 0–1 multidimensional knapsack problems. Swarm and Evolutionary Computation, 14(0):66–75, 2014. doi:10.1016/j.swevo.2013.09.002.
- Particle swarm optimization with time-varying acceleration coefficients for the multidimensional knapsack problem. Applied Mathematical Modelling, 38(4):1338–1350, 2014. doi:10.1016/j.apm.2013.08.009.
- A Genetic Algorithm for the Multidimensional Knapsack Problem. Journal of Heuristics, 4:63–86, 1998. doi:10.1023/A:1009642405419.
- Arnaud Freville. The multidimensional 0–1 knapsack problem: An overview. European Journal of Operational Research, 155(1):1–21, 2004. doi:10.1016/S0377-2217(03)00274-1.
- D.E. Goldberg. Genetic algorithms and Walsh functions: Part I, a gentle introduction. Complex Systems, 3(2):129–152, 1989.
- Jens Gottlieb. Permutation-based Evolutionary Algorithms for Multidimensional Knapsack Problems. In Proceedings of the 2000 ACM Symposium on Applied Computing - Volume 1, SAC ’00, pages 408–414. ACM, 2000. doi:10.1145/335603.335866.
- Jens Gottlieb. On the Feasibility Problem of Penalty-Based Evolutionary Algorithms for Knapsack Problems. In Applications of Evolutionary Computing, volume 2037 of Lecture Notes in Computer Science, pages 50–59. Springer Berlin Heidelberg, 2001. doi:10.1007/3-540-45365-2_6.
- A new ant colony optimization algorithm for the multidimensional Knapsack problem. Computers & Operations Research, 35(8):2672–2683, 2008. doi:10.1016/j.cor.2006.12.029.
- There is no EPTAS for two-dimensional knapsack. Information Processing Letters, 110(16):707–710, 2010. doi:10.1016/j.ipl.2010.05.031.
- Coral: An exact algorithm for the multidimensional knapsack problem. INFORMS Journal on Computing, 24(3):399–415, 2012. doi:10.1287/ijoc.1110.0460.
- Pairwise independence and its impact on estimation of distribution algorithms. Swarm and Evolutionary Computation, 27:80–96, apr 2016. doi:10.1016/j.swevo.2015.10.001. URL http://dx.doi.org/10.1016/j.swevo.2015.10.001.
- Reproductive bias, linkage learning and diversity preservation in bi-objective evolutionary optimization. Swarm and Evolutionary Computation, 48:145–155, aug 2019. doi:10.1016/j.swevo.2019.04.005. URL https://doi.org/10.1016%2Fj.swevo.2019.04.005.
- A randomized heuristic repair for the multidimensional knapsack problem. Optimization Letters, 15(2):337–355, jun 2020. doi:10.1007/s11590-020-01611-1. URL https://doi.org/10.1007%2Fs11590-020-01611-1.
- A Comparison of Linkage-learning-based Genetic Algorithms in Multidimensional knapsack Problems. In IEEE Congress on Evolutionary Computation , volume 1 of CEC’2013, pages 502–509, June 20-23 2013. doi:10.1109/CEC.2013.6557610.
- On the effectiveness of genetic algorithms for the multidimensional knapsack problem. In Proceedings of the Companion of Genetic and Evolutionary Computation, GECCO Comp ’14, pages 73–74. ACM, 2014a. doi:10.1145/2598394.2598477.
- Jean Paulo Martins and Alexandre Claudio Botazzo Delbem. The influence of linkage-learning in the linkage-tree GA when solving multidimensional knapsack problems. In Proceeding of the conference on Genetic and Evolutionary Computation, GECCO ’13, pages 821–828. ACM, 2013. doi:10.1145/2463372.2463476.
- On the performance of linkage-tree genetic algorithms for the multidimensional knapsack problem. Neurocomputing, 146:17–29, 2014b. doi:10.1016/j.neucom.2014.04.069.
- The multidimensional knapsack problem: Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265, 2010.
- The Role of Representation on the Multidimensional Knapsack Problem by means of Fitness Landscape Analysis. In IEEE Congress on Evolutionary Computation, CEC’2006, pages 2307–2314, 0-0 2006. doi:10.1109/CEC.2006.1688593.
- Multidimensional Knapsack Problem: A Fitness Landscape Analysis. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 38(3):604–616, june 2008. ISSN 1083-4419. doi:10.1109/TSMCB.2008.915539.
- A novel modified binary differential evolution algorithm and its applications. Neurocomputing, 98(0):55–75, 2012a. doi:10.1016/j.neucom.2011.11.033. Bio-inspired computing and applications (LSMS-ICSEE ’ 2010).
- An effective hybrid EDA-based algorithm for solving multidimensional knapsack problem. Expert Systems with Applications, 39(5):5593–5599, 2012b. doi:10.1016/j.eswa.2011.11.058.
- Jean P. Martins (2 papers)