Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 44 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A Planet Scale Spatial-Temporal Knowledge Graph Based On OpenStreetMap And H3 Grid (2405.15375v1)

Published 24 May 2024 in cs.AI, cs.DB, and cs.DC

Abstract: Geospatial data plays a central role in modeling our world, for which OpenStreetMap (OSM) provides a rich source of such data. While often spatial data is represented in a tabular format, a graph based representation provides the possibility to interconnect entities which would have been separated in a tabular representation. We propose in our paper a framework which supports a planet scale transformation of OpenStreetMap data into a Spatial Temporal Knowledge Graph. In addition to OpenStreetMap data, we align the different OpenStreetMap geometries on individual h3 grid cells. We compare our constructed spatial knowledge graph to other spatial knowledge graphs and outline our contribution in this paper. As a basis for our computation, we use Apache Sedona as a computational framework for our Spatial Temporal Knowledge Graph construction

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: