Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

When far is better: The Chamberlin-Courant approach to obnoxious committee selection (2405.15372v1)

Published 24 May 2024 in cs.DS and cs.GT

Abstract: Classical work on metric space based committee selection problem interprets distance as near is better''. In this work, motivated by real-life situations, we interpret distance asfar is better''. Formally stated, we initiate the study of obnoxious'' committee scoring rules when the voters' preferences are expressed via a metric space. To this end, we propose a model where large distances imply high satisfaction and study the egalitarian avatar of the well-known Chamberlin-Courant voting rule and some of its generalizations. For a given integer value $1 \le \lambda \le k$, the committee size k, a voter derives satisfaction from only the $\lambda$-th favorite committee member; the goal is to maximize the satisfaction of the least satisfied voter. For the special case of $\lambda = 1$, this yields the egalitarian Chamberlin-Courant rule. In this paper, we consider general metric space and the special case of a $d$-dimensional Euclidean space. We show that when $\lambda$ is $1$ and $k$, the problem is polynomial-time solvable in $\mathbb{R}^2$ and general metric space, respectively. However, for $\lambda = k-1$, it is NP-hard even in $\mathbb{R}^2$. Thus, we havedouble-dichotomy'' in $\mathbb{R}2$ with respect to the value of {\lambda}, where the extreme cases are solvable in polynomial time but an intermediate case is NP-hard. Furthermore, this phenomenon appears to be ``tight'' for $\mathbb{R}2$ because the problem is NP-hard for general metric space, even for $\lambda=1$. Consequently, we are motivated to explore the problem in the realm of (parameterized) approximation algorithms and obtain positive results. Interestingly, we note that this generalization of Chamberlin-Courant rules encodes practical constraints that are relevant to solutions for certain facility locations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.