Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Compilation for Dynamically Field-Programmable Qubit Arrays with Efficient and Provably Near-Optimal Scheduling (2405.15095v2)

Published 23 May 2024 in cs.ET and quant-ph

Abstract: Dynamically field-programmable qubit arrays based on neutral atoms feature high fidelity and highly parallel gates for quantum computing. However, it is challenging for compilers to fully leverage the novel flexibility offered by such hardware while respecting its various constraints. In this study, we break down the compilation for this architecture into three tasks: scheduling, placement, and routing. We formulate these three problems and present efficient solutions to them. Notably, our scheduling based on graph edge-coloring is provably near-optimal in terms of the number of two-qubit gate stages (at most one more than the optimum). As a result, our compiler, Enola, reduces this number of stages by 3.7x and improves the fidelity by 5.9x compared to OLSQ-DPQA, the current state of the art. Additionally, Enola is highly scalable, e.g., within 30 minutes, it can compile circuits with 10,000 qubits, a scale sufficient for the current era of quantum computing. Enola is open source at https://github.com/UCLA-VAST/Enola

Definition Search Book Streamline Icon: https://streamlinehq.com
References (48)
  1. H. J. Manetsch, G. Nomura, E. Bataille, K. H. Leung, X. Lv, and M. Endres, “A tweezer array with 6100 highly coherent atomic qubits”, 2024. [Online]. Available: https://arxiv.org/abs/2403.12021
  2. D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin, “A quantum processor based on coherent transport of entangled atom arrays,” Nature, vol. 604, no. 7906, pp. 451–456, 2022, DOI: 10.1038/s41586-022-04592-6.
  3. S. J. Evered, D. Bluvstein, M. Kalinowski, S. Ebadi, T. Manovitz, H. Zhou, S. H. Li, A. A. Geim, T. T. Wang, N. Maskara, H. Levine, G. Semeghini, M. Greiner, V. Vuletić, and M. D. Lukin, “High-fidelity parallel entangling gates on a neutral-atom quantum computer,” Nature, vol. 622, no. 7982, p. 268–272, 2023, DOI: 10.1038/s41586-023-06481-y.
  4. QuEra. [Online]. Available: https://www.quera.com/
  5. Infleqtion. [Online]. Available: https://www.infleqtion.com/
  6. Pasqal. [Online]. Available: https://www.pasqal.com/
  7. planqc. [Online]. Available: https://www.planqc.eu/
  8. Atom Computing. [Online]. Available: https://atom-computing.com/
  9. D. Bluvstein, H. Levine, G. Semeghini, T. T. Wang, S. Ebadi, M. Kalinowski, A. Keesling, N. Maskara, H. Pichler, M. Greiner, V. Vuletić, and M. D. Lukin, “Logical quantum processor based on reconfigurable atom arrays,” Nature, vol. 626, no. 7997, pp. 58–65, 2024, DOI: 10.1038/s41586-023-06927-3.
  10. D. B. Tan, D. Bluvstein, D. M. Lukin, and J. Cong, “Compiling quantum circuits for dynamically field-programmable neutral atoms array processors,” Quantum, vol. 8, p. 1281, 2024, DOI: 10.22331/q-2024-03-14-1281.
  11. G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem for NISQ-era quantum devices,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, Providence, RI, USA, 2019, pp. 1001–1014, DOI: 10.1145/3297858.3304023.
  12. C.-Y. Huang, C.-H. Lien, and W.-K. Mak, “Reinforcement learning and DEAR framework for solving the qubit mapping problem,” in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, New York, NY, USA, 2022, DOI: 10.1145/3508352.3549472.
  13. S. Li, K. D. Nguyen, Z. Clare, and Y. Feng, “Single-qubit gates matter for optimising quantum circuit depth in qubit mapping,” in Proceedings of the 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2023, DOI: 10.1109/ICCAD57390.2023.10323863.
  14. S. Park, D. Kim, M. Kweon, J.-Y. Sim, and S. Kang, “A fast and scalable qubit-mapping method for noisy intermediate-scale quantum computers,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, New York, NY, USA, 2022, p. 13–18, DOI: 10.1145/3489517.3530402.
  15. R. Wille, L. Burgholzer, and A. Zulehner, “Mapping quantum circuits to IBM QX architectures using the minimal number of SWAP and H operations,” in Proceedings of the 56th Annual Design Automation Conference 2019, Las Vegas, NV, USA, 2019, DOI: 10.1145/3316781.3317859.
  16. C. Zhang, A. B. Hayes, L. Qiu, Y. Jin, Y. Chen, and E. Z. Zhang, “Time-optimal qubit mapping,” in Proceedings of the 26th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Virtual USA, 2021, pp. 360–374, DOI: 10.1145/3445814.3446706.
  17. A. Molavi, A. Xu, M. Diges, L. Pick, S. Tannu, and A. Albarghouthi, “Qubit mapping and routing via MaxSAT,” in Proceedings of the 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), 2022, pp. 1078–1091, DOI: 10.1109/MICRO56248.2022.00077.
  18. B. Tan and J. Cong, “Optimal qubit mapping with simultaneous gate absorption,” in Proceedings of the 40th IEEE/ACM International Conference on Computer-Aided Design, Munich, Germany, 2021, DOI: 10.1109/ICCAD51958.2021.9643554.
  19. B. Tan and J. Cong, “Optimality study of existing quantum computing layout synthesis tools,” IEEE Transactions on Computers, vol. 70, no. 9, pp. 1363–1373, 2021, DOI: 10.1109/TC.2020.3009140.
  20. B. Tan and J. Cong, “Optimal layout synthesis for quantum computing,” in Proceedings of the 39th IEEE/ACM International Conference on Computer-Aided Design, Virtual Event, USA, 2020, DOI: 10.1145/3400302.3415620.
  21. W.-H. Lin, J. Kimko, B. Tan, N. Bjørner, and J. Cong, “Scalable optimal layout synthesis for NISQ quantum processors,” in 2023 60th ACM/IEEE Design Automation Conference (DAC), 2023, DOI: 10.1109/DAC56929.2023.10247760.
  22. T.-A. Wu, Y.-J. Jiang, and S.-Y. Fang, “A robust quantum layout synthesis algorithm with a qubit mapping checker,” in Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, New York, NY, USA, 2022, DOI: 10.1145/3508352.3549394.
  23. H. Fan, C. Guo, and W. Luk, “Optimizing quantum circuit placement via machine learning,” in Proceedings of the 59th ACM/IEEE Design Automation Conference, New York, NY, USA, 2022, p. 19–24, DOI: 10.1145/3489517.3530403.
  24. I. Shaik and J. van de Pol, “Optimal layout synthesis for quantum circuits as classical planning,” in Proceedings of the 42th IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, California, USA, 2023, DOI: 10.1145/3400302.3415620.
  25. B. Tan, D. Bluvstein, M. D. Lukin, and J. Cong, “Qubit mapping for reconfigurable atom arrays,” in Proceedings of the 41th IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Diego, California, 2022, DOI: 10.1145/3508352.3549331.
  26. H. Wang, B. Tan, P. Liu, Y. Liu, J. Gu, J. Cong, and S. Han, “Q-Pilot: Field programmable quantum array compilation with flying ancillas”, 2024. [Online]. Available: https://arxiv.org/abs/2311.16190
  27. H. Wang, P. Liu, D. B. Tan, Y. Liu, J. Gu, D. Z. Pan, J. Cong, U. A. Acar, and S. Han, “Atomique: A quantum compiler for reconfigurable neutral atom arrays”, 2024. [Online]. Available: https://arxiv.org/abs/2311.15123
  28. J. Misra and D. Gries, “A constructive proof of Vizing’s theorem,” Information Processing Letters, vol. 41, no. 3, pp. 131–133, Mar. 1992, DOI: 10.1016/0020-0190(92)90041-S.
  29. D. B. Tan, S. Ping, and J. Cong, “Depth-optimal addressing of 2D qubit array with 1D controls based on exact binary matrix factorization”, 2024. [Online]. Available: http://arxiv.org/abs/2401.13807
  30. E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate optimization algorithm”, Nov. 2014. [Online]. Available: https://arxiv.org/abs/1411.4028
  31. H. Levine, A. Keesling, G. Semeghini, A. Omran, T. T. Wang, S. Ebadi, H. Bernien, M. Greiner, V. Vuletić, H. Pichler, and M. D. Lukin, “Parallel implementation of high-fidelity multi-qubit gates with neutral atoms,” Physical Review Letters, vol. 123, no. 17, p. 170503, 2019, DOI: 10.1103/PhysRevLett.123.170503.
  32. R. Iten, R. Moyard, T. Metger, D. Sutter, and S. Woerner, “Exact and practical pattern matching for quantum circuit optimization,” ACM Transactions on Quantum Computing, vol. 3, no. 1, 2022, DOI: 10.1145/3498325.
  33. Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann, and F. T. Chong, “Optimized compilation of aggregated instructions for realistic quantum computers,” in Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, New York, NY, USA, 2019, p. 1031–1044, DOI: 10.1145/3297858.3304018.
  34. M. Hein, W. Dür, J. Eisert, R. Raussendorf, M. Van den Nest, and H.-J. Briegel, “Entanglement in graph states and its applications,” in Quantum Computers, Algorithms and Chaos, ser. Proceedings of the International School of Physics “Enrico Fermi”, vol. 162.   Varenna, Italy: IOP Press, 2006, pp. 115–218, DOI: 10.3254/978-1-61499-018-5-115.
  35. T.-C. Chen and Y.-W. Chang, “Modern floorplanning based on b/sup */-tree and fast simulated annealing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 4, pp. 637–650, 2006, DOI: 10.1109/TCAD.2006.870076.
  36. D. Hespe, C. Schulz, and D. Strash, “Scalable kernelization for maximum independent sets,” ACM Journal of Experimental Algorithmics, vol. 24, no. 1, 2019, DOI: 10.1145/3355502.
  37. T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinkemeyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance, C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel, and M. Saffman, “Multi-qubit entanglement and algorithms on a neutral-atom quantum computer,” Nature, vol. 604, no. 7906, pp. 457–462, 2022, DOI: 10.1038/s41586-022-04603-6.
  38. J. M. Baker, A. Litteken, C. Duckering, H. Hoffman, H. Bernien, and F. T. Chong, “Exploiting long-distance interactions and tolerating atom loss in neutral atom quantum architectures,” in Proceedings of the 48th Annual International Symposium on Computer Architecture, Virtual Event, 2021, p. 818–831, DOI: 10.1109/ISCA52012.2021.00069.
  39. Y. Li, Y. Zhang, M. Chen, X. Li, and P. Xu, “Timing-aware qubit mapping and gate scheduling adapted to neutral atom quantum computing,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 42, no. 11, pp. 3768–3780, 2023, DOI: 10.1109/TCAD.2023.3261244.
  40. T. Patel, D. Silver, and D. Tiwari, “Geyser: A compilation framework for quantum computing with neutral atoms,” in Proceedings of the 49th Annual International Symposium on Computer Architecture, New York, NY, USA, 2022, p. 383–395, DOI: 10.1145/3470496.3527428.
  41. S. Brandhofer, H. P. Büchler, and I. Polian, “Optimal mapping for near-term quantum architectures based on Rydberg atoms,” in Proceedings of the 40th IEEE/ACM International Conference on Computer-Aided Design, Munich, Germany, 2021, DOI: 10.1109/ICCAD51958.2021.9643490.
  42. N. Nottingham, M. A. Perlin, R. White, H. Bernien, F. T. Chong, and J. M. Baker, “Decomposing and routing quantum circuits under constraints for neutral atom architectures”, 2023. [Online]. Available: http://arxiv.org/abs/2307.14996
  43. L. Schmid, S. Park, S. Kang, and R. Wille, “Hybrid circuit mapping: Leveraging the full spectrum of computational capabilities of neutral atom quantum computers”, 2023. [Online]. Available: https://arxiv.org/abs/2311.14164
  44. L. Guo, Y. Chi, J. Wang, J. Lau, W. Qiao, E. Ustun, Z. Zhang, and J. Cong, “Autobridge: Coupling coarse-grained floorplanning and pipelining for high-frequency HLS design on multi-die FPGAs,” in The 2021 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2021, pp. 81–92, DOI: 10.1145/3431920.3439289.
  45. C. Li, M. Xie, C.-K. Koh, J. Cong, and P. H. Madden, “Routability-driven placement and white space allocation,” IEEE Transactions on Computer-aided design of Integrated Circuits and Systems, vol. 26, no. 5, pp. 858–871, 2007, DOI: 10.1109/TCAD.2007.8361580.
  46. G. Li, A. Wu, Y. Shi, A. Javadi-Abhari, Y. Ding, and Y. Xie, “Paulihedral: a generalized block-wise compiler optimization framework for quantum simulation kernels,” in Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, New York, NY, USA, 2022, p. 554–569, DOI: 10.1145/3503222.3507715.
  47. Q. Xu, J. P. Bonilla Ataides, C. A. Pattison, N. Raveendran, D. Bluvstein, J. Wurtz, B. Vasić, M. D. Lukin, L. Jiang, and H. Zhou, “Constant-overhead fault-tolerant quantum computation with reconfigurable atom arrays,” Nature Physics, 2024, DOI: 10.1038/s41567-024-02479-z.
  48. T. Jiang and B. Ravikumar, “Minimal NFA problems are hard,” SIAM Journal on Computing, vol. 22, no. 6, pp. 1117–1141, 1993, DOI: 10.1137/0222067.
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com