Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Differentiable Annealed Importance Sampling Minimizes The Symmetrized Kullback-Leibler Divergence Between Initial and Target Distribution (2405.14840v2)

Published 23 May 2024 in stat.ML and cs.LG

Abstract: Differentiable annealed importance sampling (DAIS), proposed by Geffner & Domke (2021) and Zhang et al. (2021), allows optimizing over the initial distribution of AIS. In this paper, we show that, in the limit of many transitions, DAIS minimizes the symmetrized Kullback-Leibler divergence between the initial and target distribution. Thus, DAIS can be seen as a form of variational inference (VI) as its initial distribution is a parametric fit to an intractable target distribution. We empirically evaluate the usefulness of the initial distribution as a variational distribution on synthetic and real-world data, observing that it often provides more accurate uncertainty estimates than VI (optimizing the reverse KL divergence), importance weighted VI, and Markovian score climbing (optimizing the forward KL divergence).

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.