Papers
Topics
Authors
Recent
2000 character limit reached

Differentiable Annealed Importance Sampling Minimizes The Symmetrized Kullback-Leibler Divergence Between Initial and Target Distribution (2405.14840v2)

Published 23 May 2024 in stat.ML and cs.LG

Abstract: Differentiable annealed importance sampling (DAIS), proposed by Geffner & Domke (2021) and Zhang et al. (2021), allows optimizing over the initial distribution of AIS. In this paper, we show that, in the limit of many transitions, DAIS minimizes the symmetrized Kullback-Leibler divergence between the initial and target distribution. Thus, DAIS can be seen as a form of variational inference (VI) as its initial distribution is a parametric fit to an intractable target distribution. We empirically evaluate the usefulness of the initial distribution as a variational distribution on synthetic and real-world data, observing that it often provides more accurate uncertainty estimates than VI (optimizing the reverse KL divergence), importance weighted VI, and Markovian score climbing (optimizing the forward KL divergence).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 3 tweets with 47 likes about this paper.