Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Polynomial Pass Semi-Streaming Lower Bounds for K-Cores and Degeneracy (2405.14835v1)

Published 23 May 2024 in cs.DS and cs.CC

Abstract: The following question arises naturally in the study of graph streaming algorithms: "Is there any graph problem which is "not too hard", in that it can be solved efficiently with total communication (nearly) linear in the number $n$ of vertices, and for which, nonetheless, any streaming algorithm with $\tilde{O}(n)$ space (i.e., a semi-streaming algorithm) needs a polynomial $n{\Omega(1)}$ number of passes?" Assadi, Chen, and Khanna [STOC 2019] were the first to prove that this is indeed the case. However, the lower bounds that they obtained are for rather non-standard graph problems. Our first main contribution is to present the first polynomial-pass lower bounds for natural "not too hard" graph problems studied previously in the streaming model: $k$-cores and degeneracy. We devise a novel communication protocol for both problems with near-linear communication, thus showing that $k$-cores and degeneracy are natural examples of "not too hard" problems. Indeed, previous work have developed single-pass semi-streaming algorithms for approximating these problems. In contrast, we prove that any semi-streaming algorithm for exactly solving these problems requires (almost) $\Omega(n{1/3})$ passes. Our second main contribution is improved round-communication lower bounds for the underlying communication problems at the basis of these reductions: * We improve the previous lower bound of Assadi, Chen, and Khanna for hidden pointer chasing (HPC) to achieve optimal bounds. * We observe that all current reductions from HPC can also work with a generalized version of this problem that we call MultiHPC, and prove an even stronger and optimal lower bound for this generalization. These two results collectively allow us to improve the resulting pass lower bounds for semi-streaming algorithms by a polynomial factor, namely, from $n{1/5}$ to $n{1/3}$ passes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets