Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Invisible Backdoor Attack against Self-supervised Learning (2405.14672v2)

Published 23 May 2024 in cs.CV

Abstract: Self-supervised learning (SSL) models are vulnerable to backdoor attacks. Existing backdoor attacks that are effective in SSL often involve noticeable triggers, like colored patches or visible noise, which are vulnerable to human inspection. This paper proposes an imperceptible and effective backdoor attack against self-supervised models. We first find that existing imperceptible triggers designed for supervised learning are less effective in compromising self-supervised models. We then identify this ineffectiveness is attributed to the overlap in distributions between the backdoor and augmented samples used in SSL. Building on this insight, we design an attack using optimized triggers disentangled with the augmented transformation in the SSL, while remaining imperceptible to human vision. Experiments on five datasets and six SSL algorithms demonstrate our attack is highly effective and stealthy. It also has strong resistance to existing backdoor defenses. Our code can be found at https://github.com/Zhang-Henry/INACTIVE.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.