Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Heteroscedastic Preferential Bayesian Optimization with Informative Noise Distributions (2405.14657v1)

Published 23 May 2024 in cs.LG and stat.ML

Abstract: Preferential Bayesian optimization (PBO) is a sample-efficient framework for learning human preferences between candidate designs. PBO classically relies on homoscedastic noise models to represent human aleatoric uncertainty. Yet, such noise fails to accurately capture the varying levels of human aleatoric uncertainty, particularly when the user possesses partial knowledge among different pairs of candidates. For instance, a chemist with solid expertise in glucose-related molecules may easily compare two compounds from that family while struggling to compare alcohol-related molecules. Currently, PBO overlooks this uncertainty during the search for a new candidate through the maximization of the acquisition function, consequently underestimating the risk associated with human uncertainty. To address this issue, we propose a heteroscedastic noise model to capture human aleatoric uncertainty. This model adaptively assigns noise levels based on the distance of a specific input to a predefined set of reliable inputs known as anchors provided by the human. Anchors encapsulate partial knowledge and offer insight into the comparative difficulty of evaluating different candidate pairs. Such a model can be seamlessly integrated into the acquisition function, thus leading to candidate design pairs that elegantly trade informativeness and ease of comparison for the human expert. We perform an extensive empirical evaluation of the proposed approach, demonstrating a consistent improvement over homoscedastic PBO.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.